Technical Series
Using Biostatistics to Analyze Microbiome Data
Software developed by BioRankings based on formal biostatistical theory makes the analysis of microbiome data automatic, unbiased, reproducible, and interpretable. This Technical Report shows how we present microbiome data summarization, perform hypothesis testing comparing the microbiome across groups, calculate sample size and power for microbiome experiments, and estimate the population, or sample-to sample, variability (i.e., population diversity).
Automating the Analysis of Untargeted LC/MS Metabolomics Data
Untargeted metabolomics measures metabolites in samples to find those that correlate with subgroups (e.g., disease or healthy tissue). Current analysis pipelines are time consuming and require analysts to make ad hoc subjective decisions. Software developed by our group automates the analysis, removes subjective decision making, and runs fast. Linear models are added which introduces a larger class of biostatistical models and methods for researchers.
Repeated Measures Method for Microbial Count Data
This technical report introduces a repeated measures analysis method for the microbiome data using
the generalized Dirichlet-multinomial model. We start by reviewing the concept of compositional data, explain the challenge of the repeated data analysis, present the method, and illustrate its performance in hypothesis testing using simulated data.
Microbiome Research: Moving from Exploratory to Regulatory
If you plan on going to a regulatory agency like the FDA or USDA for your microbiome product, you will need to have biostatistics in order to meet their requirements. This paper shows how to move from exploratory R&D to formally designed experiments to test hypotheses about microbiome data.
Finding Distinct Subgroups of Samples Using Microbiome Taxa Count Data
In this first Report we show how cluster analysis is highly subjective with results changing for different inputs, present using the Dirichlet multinomial distribution for microbiome data, and finally show an example of this analysis using HMP stool samples.